double helix swing [2006]

an installation for swarms of midges on the banks of lakes and other bodies of water

Double Helix Swing



idea | Installation | video & images | software | technique | Autoren | doku (PDF, 1MB)


the idea

double helix swing is an installation which investigates the swarms of midges that can be found on the banks of lakes and other bodies of water. Swarms of midges are intriguing entities: without any apparent logic theyform at irregular intervals along the bank: towers of midges flying in circles – although it seems that their flight path is in fact angular. It is as though they fly in one direction, then they suddenly stop and fly off in another. Each swarm develops its own speed and rhythm. And each swarm formsitself into an axis which is circled by the midges in both directions: a flying double-helix.
The swarms are made up of male midges aiming to attract females for mating.Attraction and courtshipoccurs by wing beat which differs between the male and female insects. Based on these characteristics a video and sound installation is to be developed.

In order to observethe swarms they will be attracted by sounds of the female wing beat. Various sound sources (loud speakers) will be distributed at intervals in shallow water. At a suitable distance from the sound source a video camera will be located on the bank to record any swarms which may form. The camera is set up on a platform which can be accessed from the bank.Passers-by can approach thecamera and look for the swarms in the viewfinder. If a camera detects a formation it then remains still, a video image is recorded and is sent to a central computer.

screen prints of the indoor installation:

double helix screen print

doublehelix00

installation view at the Wallraf-Richartz-Museum Cologne, october 2006:

Double Helix Swing

top

the set up

a series of loudspeakers were placed on a platform situated over shallow water to emit the sounds of the beating of a female mosquitos wings. A video camera, located at a certain distance from the source of the loudspeakers, records images of the swarms that are produced. These images are sent to a computer that analyses the movements and visualises them on the screen in the form of traces.

Double Helix Swing

dagmar_hinten_s

dagmar_p_s

The camera ist build to be used by passers-by, they can locate possible swarms by adjusting the camera (turning, zooming etc.).

Double Helix Swing

The loudspeakers around the camera emit the sounds of various insects’ wing beats. Using the switch, passers-by can try attracting insects using the wing beat sounds of the females of different species.

indoor installation

A specially designed console provides different options for interacting with the virtual world.

Double Helix Swing

installation view at the Wallraf-Richartz-Museum Cologne, october 2006:

Double Helix Swing
top

installation (indoor), Linz 2006:

installation (video), Linz 2006:

top

images

Double Helix Swing
top

the software

The virtual world consists of three layers:

  1. the video of the midges, which runs in the background.
  2. the tracks of the midges, which are signified as nutrition (these are green tracks).
  3. the virtual creatures searching for and eating the tracks of the midges

The creatures, survival depends primarily on the video, coming from the outdoor camera.
The form of the tracks generates a structure which serves as “food” to a number of virtual creatures. These virtual creatures are capable of evolving, so adapting better and better to the tracks generated by the movements of the real mosquitoes. The behaviour of the virtual creatures depends, therefore, on the real environment, but is also conditioned internally by a virtual “genetic code” of programming and behaviour. This code can in turn be manipulated by the user of the installation.

Double Helix Swing

The intake of nutrition is regulated by a buffer, which stores all the food (that is the tracks) of the midges. The creatures have a variable food search radius. This radius depends on the velocity of the creatures. If they move fast, the search radius doesn’t have to be so big as when they are more or less immobile.
The creatures never eat all the food at once. As they eat only a certain percentage of the food found, they are able to remember where nutrition is located. The amount of food depends on the number of things moving on the video, coming from the camera. Using the sound, a feedback loop is produced: if there is too much food on the screen, the sound from the loudspeakers is muted or just changed, so that the midges are no longer attracted.

The creatures develop different forms. Every animal has a virtual gene, which defines its movement and its form. The form comprises the number of legs, the density of cells and the density of branches per node.
In the beginning there are three different types of creatures, but later on visitors can define new ones. If a creatures is replicated, a random operation defines whether the animal will be changed or not. Then, another random operation partially changes the animal’s code. While the creature is young, it will only have a few cells. But as it grows, it follows the form which is predefined in the gene. It grows until a certain, adjustable energy level is reached. Then it gives birth to several new creatures.

If the creature becomes big, it is possible that the cells will pull in different directions. Then the creature breaks in two. Both parts survive, one of them with the original code, the other with the new small form gene.

top

technique:

The installation can be shown as an indoor installation with or without the camera. The camera can be shown outdoor during summer closed to rivers or lakes. But it can also be shown indoor. Then, a virtual world is shown on the screen in which the visitors can search for swarms of midges.

For the installation without the camera you need:

  • 1 Linux-PC 3,2 GHz, 1 GB Ram, 3D-accelerated graphic card, soundcard (has to be shiped)
  • 1 stand (has to be shiped)
  • 1 Video Projectore
  • 2 Soundboxes (activ)

For the camera the following material is needed:

  • Camera (special design, has to be shiped)
  • 1 Linux-PC 3,2 GHz, approx. 1 GB Ram, mp2-encoder videocard, receiver
  • Switcher for loudspeakers
  • 5 loudspeakers

top

authors:

Concept: Ursula Damm
Programming: Christian Kessler
Sound: Yunchul Kim

fernfühler [started 2008]

Interaktive Möbel für den Öffentlichen Raum

prog_fern_zentr


Idee | InstallationKonzept | Hocker | Spiel | Autoren | Links


Idee

Fernfühler beleben den öffentlichen Raum und bringen Gestalt und Gestaltung in das Bewusstein der Öffentlichkeit. Fernfühler können auch spielen, da sie mit anderen Fernfühlern verbunden sind und diese (bzw. die Menschen, die auf ihnen sitzen) in ihrem Verhalten beeinflussen können.

Das stadtplanerische Interesse ist es, den urbanen Raum zu beleben und – anstatt eine feste Architektur der Bestuhlung öffentlicher Plätze anzubieten – bewegliche Sitzgruppen zur Verfügung zu stellen, welche miteinander kommunizieren und dabei eine optimale Verteilung der Elemente im Raum ausprobieren. Anstatt einer Planung von oben kommt hier ein “bottom up” Ansatz zum Tragen, der die Benutzer in der Gestaltungsprozess mit einbezieht.
top

Installation

Fernfühler sind frei platzierbare Sitzmöglichkeiten. Die Sitze sind modular und können zu Ensembles zusammengeschoben werden oder einzeln stehen. Sie können zu Raumteilern mutieren oder wieder einfach Sitze sein.

Zudem spüren sie, was andere Sitze machen bzw. die Menschen, die auf ihnen sitzen. Und sie können auf das reagiern, was andere tun. Sie sind robust, kostengünstig und unprätentiös. Sie mögen gerne die Gesellschaft von Menschen, denn sie bewegen sich immer in Richtung von Personen.

Sie können hören. Wenn man sie ruft, kommen sie. Sie halten sich gerne in der Nähe eines Tisches auf, in den ein Touchscreen eingelassen ist.

Alles, was die Fernfühler tun, ist auf einem grossen Touchscreen sichtbar. Dort kann man mit einer Netzstruktur spielen, über die die Fernfühler verbunden sind. Man kann die Bahnen der Hocker auf dem Platz steuern.

erklaerung_fernfuehler_n
top

Konzept

Exkurs

Ist die programmierte Kunst eine Weiterentwicklung der Konzeptkunst? Arbeiten von Dan Graham (“Poem Schema”, 1966 – 1969) oder Sol Lewitts Wall drawings legen diese Vermutug nahe. Konzepte wurden als formales System formuliert und – im Falle von Sol Lewitt – als Handlungsanweisung an einen Handwerker übergeben, der sich um die Ausführung z.B. einer Zeichnung auf einer Wand kümmerte.
Programme, die wir heute schreiben, suchen nicht den Handwerker, sie sind Interface, Dienstleistung, vielleicht sogar Vergnügen. In jedem Falle machen sich heute die Programmierenden mehr Gedanken um diejenigen, die diese Programme ausführen. So ist “software art” schlussendlich ein Ereignis zwischen Programmierer und Anwender.

Die Installation Fernfühler findet sich – ohne Absicht – nahe bei der Ästhetik Sol Lewitts “Serial Project #1” oder “Serial Project ABCD” wieder. Programmierung braucht auch heute noch streng formale Systeme, um funktionieren zu können. Dinge müssen vergleichbar sein, um dem Computer zu erlauben, Vergleiche, Unterscheidungen und Entscheidungen treffen zu können. Da die Welt des Computers noch viel viel kleiner ist als die unsere, muss man dem Computer eine vereinfachte Wirklichkeit anbieten. Sonst versteht er sie nicht.

Die Benutzung der Besucher und Passanten wird das ausgangs geordnete Erscheinungsbild der “Fernfühler” aufbrechen. Dabei können die Besucher die Objekte selbst bewegen und Lehnen ausklappen. Ihre Position können sie remote auch über eine zentrale Steuerung (mittels Touchscreen) nach eigenem Gutdünken ändern und – einem deus ex machina gleich – eingreifen; oder sie überlassen die Fernfühler sich selbst, und zwar ihrem “bottom up” – selbstordnenden, autonomen Organisationsprinzip.

Eine (nicht zu üppige) Anzahl von Fernfühlern besiedeln einen Platz.

Fernfühler sind intelligent. Es sind Möbel, die mit Rollen und einem Antrieb versehen sind. Sie können also sich eigenständig bewegen. Sie werden, sobald Menschen auf dem Platz auftauchen, sich in die Nähe der Menschen begeben, denn mit Mikrophonen horchen sie nach deren Stimmen.

Nun kann man Platz nehmen auf den Hockern, man kann Gruppen bilden oder alleine bleiben. Dadurch, dass Fernfühler vorangig dorthin gehen, wo Menschen sind, wird die Möblierung des Platzes der Struktur des Ortes entsprechen und sie verstärken. Nun könnte man sich also auf den Platz setzen und beobachten, wie die Sitze wandern, wie Menschen auf sie reagieren. Man könnte auch versuchen, mit Rufen die Sitze anzulocken. Ohne weitere Eingriffe lernen die Sitze ihren Aufenthaltsort von den Menschen auf dem Platz.

Wem es zu langweilig wird, dem automatischen Treiben der Hocker zuzuschauen, der kann auf einem in einen Tisch eingelassenen Touchscreen spielen. Auf dem Bildschirm sieht man eine Netzstruktur mit Punkten an jedem Knoten. Jeder Fernfühler auf dem Platz stellt ein Knoten dieses Netzes dar. Das Netz verbindet alle Fernfühler und legt sich gleichzeitig wie eine Haut über den Platz. Nun wird es verschiedene Möglichkeiten geben, über das Verändern der Grafik das Verhalten der Fernfühler auf dem Platz zu bestimmen.

Sinn der Installation ist es, den öffentlichen Raum für (junge) Menschen attraktiver zu machen. Mit dem Angebot der vernetzten Sitzgelegenheiten erleben sie den Platz als eine variable Stätte jenseits stabiler Architektur. Zudem können sie sich selbst als Regisseur am Touchscreen versuchen, indem sie über die Raumverteilung der Möbel das Passantenverhalten beeinflussen können.

Spielplatz als mögliche Testumgebung:
fernfuehler
top

Hocker

Die Hocker bewegen sich auf Rollen, wenn man sich auf sie setzt, stehen sie auf ihrem Rahmen, der sich federnd auf den Boden aufsetzt.

Jeder Hocker ist gleichzeitig Knoten in einem virtuellen Netz, das alle Hocker verbindet. Die Knoten des Netzes sind “Neuronen”, sie lernen von Signalen, die die Hocker sozusagen empfangen. Hier sind die Geräusche und die Benutzung (Sitzen) der Hocker die Signale, die das neuronale Netz füttert. Leuchtdioden im Inneren der Hocker zeigen den Erregungszustand des Hockers im neuronalen Netz an (farbiges oder weisses Licht).

montage4

led_quer

Jeder Hocker hat einen Controller, an welchen ein Microphon und ein Drucksensor angebunden ist. Der Drucksensor vermeldet, ob jemand auf dem Hocker sitzt, das Microphon nimmt Umgebungsgeräusche, gefiltert auf menschliche Stimmen wahr. Melden diese Sensoren Aktivität, so “lernt” der Hocker diese Position als “positiv”. Das Netzwerk (eine emergente Selbst-Organisierenden Merkmalskarte, “ESOM”) seinerseits verbindet alle Hocker und somit alle Aktivitäten des Platzes miteinander. Dafür hat jeder Controller ein Funkmodul, mit welchem es seinen Zustand an andere Hocker schicken kann. Jeder Hocker, der sehr aktiv ist, zieht andere Hocker in seine Nähe. So herrscht eine stete Bewegung auf dem Platz mit der Tendenz der Verdichtung an Orten, die von Besuchern bevorzugt werden.

Prototyp eines Fahrgestells aus Akkuschraubern mit drei Rädern und LED’s zur Anzeige der Funktion im neuronalen Netz:
mitled_f

Die gewählte Form des neuronalen Netzes (Kohonenkarte) hat die Tendenz, sich an Stellen hoher Aktivität zu verdichten. Durch eine Art “Spiel” wird innerhalb der “SOM” eine räumlich zirkulierende Aktivität erzeugt, die die Energien in einem abgeschlossenen Raum (hier der öffentliche Platz) verteilt.
top

Das Spiel

Betritt ein Besucher den Ausstellungsbereich, so wird er benachrichtigt, dass er sich im
Einzugsbereich der Fernfühler befindet und eine Software zum Download bereit steht.
Über diese Software kann sich der Besucher mit dem Spiel verbinden und bekommt ein
Bild auf den PDA, welches den Ort der Fernfühler repräsentiert und ermöglicht, sie mit
Impulsen zu stimulieren.
Man kann über das Berühren der Bildschirmfläche die Hockerlandschaft in mehrfacher
Weise beeinflussen:

  1. Man stimuliert das neuronale Netzes durch Berühren der Knoten. Hierüber erlernen die Spieler das Funktionieren von selbstlernenden Systemen (sie regeln langsam nach, reagieren nicht sofort, haben Nachbarschaftsregeln). Sie erleben sich selbst, sitzend auf den Hockern, als Teil einen Netzwerkes.
  2. Man kann Hocker direkt plazieren, indem man Knoten des Netzes (virtuell) herausnimmt und woanders hinsetzt. Dadurch bricht die Struktur des Netzes auf und bedingt ein Nachregeln, wobei deutlich wird, daß Eingriffe von aussen nur temporäre „Störungen“ sind und langfristig die Ortsstruktur und die Gewohnheiten der Passanten die Oberhand „gewinnen“.
  3. Man kann das System in seinen Ursprungszustand zurückversetzen (reset) und bringt die Knoten/Hocker an ihre ursprüngliche Position zurück. Die Hocker bewegen sich dann so lange, bis sie gleichmässig über den Platz verteilt sind

prototyp

Variantionen der Raumordnung:
prog_fern06
logik

Autoren:

Ursula Damm und Matthias Weber (Dipl. Informatiker)

Links: